Nginx 是一个高性能的 HTTP 和反向代理服务器
概述
Nginx (“engine x”) 是一个高性能的 HTTP 和反向代理服务器,特点是占有内存少,并发能力强,事实上 nginx 的并发能力确实在同类型的网页服务器中表现较好,
Nginx 可以作为静态页面的 web 服务器,同时还支持 CGI 协议的动态语言,比如 perl、 php等。但是不支持 java。 Java 程序只能通过与 tomcat 配合完成。 Nginx 专为性能优化而开发,性能是其最重要的考量,实现上非常注重效率 ,能经受高负载的考验,有报告表明能支持高达 50,000 个并发连接数。
- 正向代理
Nginx 不仅可以做反向代理,实现负载均衡。还能用作正向代理来进行上网等功能。
正向代理:如果把局域网外的 Internet 想象成一个巨大的资源库,则局域网中的客户端要访问 Internet,则需要通过代理服务器来访问,这种代理服务就称为正向代理。
- 反向代理
反向代理,其实客户端对代理是无感知的,因为客户端不需要任何配置就可以访问,我们只需要将请求发送到反向代理服务器,由反向代理服务器去选择目标服务器获取数据后,在返回给客户端,此时反向代理服务器和目标服务器对外就是一个服务器,暴露的是代理服务器
地址,隐藏了真实服务器 IP 地址。
- 负载均衡
客户端发送多个请求到服务器,服务器处理请求,有一些可能要与数据库进行交互,服务器处理完毕后,再将结果返回给客户端。
这种架构模式对于早期的系统相对单一,并发请求相对较少的情况下是比较适合的,成本也低。但是随着信息数量的不断增长,访问量和数据量的飞速增长,以及系统业务的复杂度增加,这种架构会造成服务器相应客户端的请求日益缓慢,并发量特别大的时候,还容易造成服务器直接崩溃。很明显这是由于服务器性能的瓶颈造成的问题,那么如何解决这种情况呢?
我们首先想到的可能是升级服务器的配置,比如提高 CPU 执行频率,加大内存等提高机器的物理性能来解决此问题,但是我们知道摩尔定律的日益失效,硬件的性能提升已经不能满足日益提升的需求了。最明显的一个例子,天猫双十一当天,某个热销商品的瞬时访问量
是极其庞大的,那么类似上面的系统架构,将机器都增加到现有的顶级物理配置,都是不能够满足需求的。那么怎么办呢?
上面的分析我们去掉了增加服务器物理配置来解决问题的办法,也就是说纵向解决问题的办法行不通了,那么横向增加服务器的数量呢?这时候集群的概念产生了,单个服务器解决不了,我们增加服务器的数量,然后将请求分发到各个服务器上,将原先请求集中到单个
服务器上的情况改为将请求分发到多个服务器上,将负载分发到不同的服务器,也就是我们所说的负载均衡
- 动静分离
为了加快网站的解析速度,可以把动态页面和静态页面由不同的服务器来解析,加快解析速
度。降低原来单个服务器的压力。
负载均衡
- 轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器 down 掉,能自动剔除。 - weight
weight 代表权,重默认为 1,权重越高被分配的客户端越多指定轮询几率, weight 和访问比率成正比,用于后端服务器性能不均的情况。 - least_conn
此策略是指每次将请求分发到当前连接数最少的服务器上,试图转发给相对空闲的服务器以实现负载平衡;
ip_hash
每个请求按访问 ip 的 hash 结果分配,这样每个访客固定访问一个后端服务器,可以解决 session 的问题。从本质上说,ip hash算法是一种变相的轮询算法,如果两个ip的初始hash值恰好相同,那么来自这两个ip的请求将永远落在同一台服务器上,这为均衡性埋下了较深隐患。url hash
按访问url的hash结果来分配请求,使每个url定向到同一个后端服务器,后端服务器为缓存时比较有效。
fair(第三方)
根据后端服务器的响应时间判断负载情况,从中选出负载最轻的机器进行分流。
动静分离

Nginx 动静分离简单来说就是把动态跟静态请求分开,不能理解成只是单纯的把动态页面和静态页面物理分离。严格意义上说应该是动态请求跟静态请求分开,可以理解成使用 Nginx处理静态页面, Tomcat 处理动态页面。
实现方案:
一种是纯粹把静态文件独立成单独的域名,放在独立的服务器上,也是目前主流推崇的方案;
另外一种方法就是动态跟静态文件混合在一起发布,通过 nginx 来分开。通过 location 指定不同的后缀名实现不同的请求转发。通过 expires 参数设置,可以使浏览器缓存过期时间,减少与服务器之前的请求和流量。
工作原理
Nginx本身做的工作实际很少,当它接到一个HTTP请求时,它仅仅是通过查找配置文件将此次请求映射到一个location block,而此location中所配置的各个指令则会启动不同的模块去完成工作,因此模块可以看做Nginx真正的劳动工作者。通常一个location中的指令会涉及一个handler模块和多个filter模块(当然,多个location可以复用同一个模块)。handler模块负责处理请求,完成响应内容的生成,而filter模块对响应内容进行处理。
模块:
- Handlers(处理器模块)。此类模块直接处理请求,并进行输出内容和修改headers信息等操作。Handlers处理器模块一般只能有一个。
- Filters (过滤器模块)。此类模块主要对其他处理器模块输出的内容进行修改操作,最后由Nginx输出。
- Proxies (代理类模块)。此类模块是Nginx的HTTP Upstream之类的模块,这些模块主要与后端一些服务比如FastCGI等进行交互,实现服务代理和负载均衡等功能。
进程模型
Nginx默认采用多进程工作方式。
Nginx启动后,会运行一个master进程和多个worker进程。其中master充当整个进程组与用户的交互接口,同时对进程进行监护,管理worker进程来实现重启服务、平滑升级、更换日志文件、配置文件实时生效等功能。worker用来处理基本的网络事件,worker之间是平等的,他们共同竞争来处理来自客户端的请求。
master:管理worker
master进程主要用来管理worker进程,具体包括如下4个主要功能:
(1)接收来自外界的信号。
(2)向各worker进程发送信号。
(3)监控woker进程的运行状态。
(4)当woker进程退出后(异常情况下),会自动重新启动新的woker进程。
worker:处理请求
多个worker进程之间是对等的,他们同等竞争来自客户端的请求,各进程互相之间是独立的。一个请求,只可能在一个worker进程中处理,一个worker进程,不可能处理其它进程的请求。worker进程的个数是可以设置的,一般我们会设置与机器cpu核数一致,这里面的原因与nginx的进程模型以及事件处理模型是分不开的。
Nginx采用异步非阻塞的方式来处理网络事件:
- 接收请求:
在创建master进程时,先建立需要监听的socket(listenfd),然后从master进程中fork()出多个worker进程,如此一来每个worker进程都可以监听用户请求的socket。一般来说,当一个连接进来后,所有在Worker都会收到通知,但是只有一个进程可以接受这个连接请求,其它的都失败,这是所谓的惊群现象。nginx提供了一个accept_mutex(互斥锁),有了这把锁之后,同一时刻,就只会有一个进程在accpet连接,这样就不会有惊群问题了。
- 处理请求
当一个worker进程在accept这个连接之后,就开始读取请求,解析请求,处理请求,产生数据后,再返回给客户端,最后才断开连接,这样一个完整的请求就是这样的了。
我们可以看到,一个请求,完全由worker进程来处理,而且只在一个worker进程中处理。worker进程之间是平等的,每个进程,处理请求的机会也是一样的。
性能高的原因
nginx是以多进程的方式来工作的,当然nginx也是支持多线程的方式的,只是我们主流的方式还是多进程的方式,也是nginx的默认方式。
- 多进程模型
- 异步非阻塞
多进程模型 VS 多线程模型
首先,对于每个worker进程来说,独立的进程,不需要加锁,所以省掉了锁带来的开销;
其次,采用独立的进程,可以让互相之间不会影响,一个进程退出后,其它进程还在工作,服务不会中断,master进程则很快启动新的worker进程。
apache的常用工作方式(apache也有异步非阻塞版本,但因其与自带某些模块冲突,所以不常用),每个请求会独占一个工作线程,当并发数上到几千时,就同时有几千的线程在处理请求了。这对操作系统来说,是个不小的挑战,线程带来的内存占用非常大,线程的上下文切换带来的cpu开销很大,自然性能就上不去了,而这些开销完全是没有意义的。
同步阻塞 VS 异步非阻塞
同步阻塞的:处理请求时遇到读写事件,而当读写事件没有准备好时,那就只能等了,等事件准备好了,你再继续吧。cpu空闲下来没人用,cpu利用率自然上不去了,更别谈高并发了。
非阻塞就是,事件虽没有准备好,但不会让你一直在等待,马上返回ErrorAgain,先去处理别的请求,但是需要不时地过来检查一下事件的状态,这种开销也是不小的。
所以有了异步非阻塞的事件处理机制,具体到系统调用就是像select/poll/epoll/kqueue这样的系统调用。同时监控多个事件,调用他们是阻塞的,但可以设置超时时间,在超时时间之内准备好就返回。epoll为例,当事件没准备好时,放到epoll里面,事件准备好了,我们就去读写,当读写返回ErrorAgain时,我们将它再次加入到epoll里面。这样,只要有事件准备好了,我们就去处理它,只有当所有事件都没准备好时,才在epoll里面等着。
这样,高并发下,线程虽然只有一个,但是一直在循环切换、处理请求而不停止,切换是没有任何代价,理解为循环处理多个准备好的事件,事实上就是这样的。与多线程相比,这种事件处理方式不需要创建线程,每个请求占用的内存也很少,没有上下文切换。并发数再多也不会导致无谓的资源浪费(上下文切换)。更多的并发数,只是会占用更多的内存而已。
worker 数量
推荐设置worker的个数 == cpu的核数,在这里就很容易理解了,更多的worker数,只会导致进程来竞争cpu资源了,从而带来不必要的上下文切换。而且,nginx为了更好的利用多核特性,提供了cpu亲缘性的绑定选项,我们可以将某一个进程绑定在某一个核上,这样就不会因为进程的切换带来cache的失效。
对于一个基本的web服务器来说,事件通常有三种类型,网络事件、信号、定时器。从上面的讲解中知道,网络事件通过异步非阻塞可以很好的解决掉。如何处理信号与定时器?
信号处理
首先,信号的处理。对nginx来说,有一些特定的信号,代表着特定的意义。信号会中断掉程序当前的运行,在改变状态后,继续执行。如果是系统调用,则可能会导致系统调用的失败,需要重入。关于信号的处理,大家可以学习一些专业书籍,这里不多说。对于nginx来说,如果nginx正在等待事件(epoll_wait时),如果程序收到信号,在信号处理函数处理完后,epoll_wait会返回错误,然后程序可再次进入epoll_wait调用。
定时器
由于epoll_wait等函数在调用的时候是可以设置一个超时时间的,所以nginx借助这个超时时间来实现定时器。nginx里面的定时器事件是放在一颗维护定时器的红黑树里面,每次在进入epoll_wait前,先从该红黑树里面拿到所有定时器事件的最小时间,在计算出epoll_wait的超时时间后进入epoll_wait。所以当没有事件产生,也没有中断信号时,epoll_wait会超时,也就是说定时器事件到了。这时nginx会检查所有的超时事件,将他们的状态设置为超时,然后再去处理网络事件。